sniffnoy: (Sonic)
[personal profile] sniffnoy
So here's an interesting paper that really deserves to be better known: On Onp, by Joseph DiMuro.

Here, On2 refers to the nimbers. Let me review those briefly.

One can put on the ordinals two unusual recursively-defined operations, known as nim-addition and nim-multiplication, that turn them into an algebraically closed field of characteristic 2. (Except of course that they're a proper class and not a set.) If one restricts to just the finite ordinals, the whole numbers, these form a subfield, if you want to just consider it on those.

Nim addition is very easy to describe. On whole numbers, it's just bitwise xor, or binary addition without carries, and on general ordinals, it's much the same. (Write them in Cantor normal form and do bitwise xor on corresponding coefficients.) Nim multiplication is complicated and I find it quite confusing, but it's certainly computable on whole numbers, as is nim inversion.

One thing worth noting is that the nimbers provide a very concrete (if impractical) description of the algebraic closure of F2; it consists of precisely the nimbers below ω^ω^ω. I mean, nim multiplication and inversion and square roots and such are all quite confusing, but they're certainly computable on ordinals that aren't too large (at least below ε0, I should think). Maybe even finding roots of polynomials is computable? I'm less certain of this. This is really not something I'm an expert on.

Anyway, naturally there's the question of, can you come up with an analogue of the nimbers for other (positive) characteristics? Exactly what counts as an "analogue" is arguable, but few people seem to have really gotten anywhere close. S. Norton, back in the 70s, found a recursive characterization of ternary addition without carries, and here F. Laubie provides a way of doing the same thing for any prime p, but it's multiplication that's truly the hard part. (Side note: Laubie's characterization is really complicated. I'm pretty sure I have a much simpler one. Maybe it's publishable?)

Well, in "On Onp", DiMuro finally provides a characteristic p analogue of the nimbers, and it sure seems like he's done a pretty good job of it. Now, I've only skimmed the paper; I don't really understand nimbers, so actually reading it would be a bit difficult. Still, he's got a lot of the analogy down. He dispenses with recursive definitions for the operations, in favor of just making them work. He does though prove that addition in Onp, by his definition, turns out to be just base-p addition without carries (extended to the ordinals in the obvious way), so that at least can be handled by Laubie's recursion (or mine). But yeah, there's a lot of analogy there. In particular, ω^ω^ω ends up being the algebraic closure of Fp. And the operations are computable! So this gives a concrete description of the algebraic closure of Fp! He doesn't give any simple description of multiplication like there is for the nimbers (well, to the extent that that can be called "simple"), but it's still computable. He doesn't address the question of solving polynomials effectively; hopefully someone else will take this further and do that.

At the end he raises the suggestion of "On0", which perhaps might give a concrete (if impractical) description of the algebraic closure of Q (though you'd need to go beyond ω^ω^ω). This is funny; I'd always thought of the nimbers as basically the characteristic 2 analogue of the surreals, but obviously that analogy is... well, yeah, I guess there really isn't much of an analogy there. So this is interesting. But he doesn't pursue it as it would be harder. (It's worth noting that, in the nimbers, if you want the algebraic closure of F2(t), you have to go well beyond ε0, and according to DiMuro finding the exact ordinal is still an open problem, though Lenstra's old paper on the matter offers an upper bound and conjecture.)

So, yeah, this is not a topic I intend to pursue or anything (though maybe I should write up that recursion). But -- how did I not know about DiMuro's paper? This really should be better-known.

EDIT: Perhaps I should note -- maybe part of the reason is because it's so hard to find. I only stumbled across it incidentally; it doesn't say "nim" or "nimber" anywhere in the abstract, so I couldn't turn it up in searches. If I had thought to search on "on_2", that would have turned it up, but...

-Harry
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

June 2025

S M T W T F S
1234567
891011121314
15161718192021
2223 2425262728
2930     
Page generated Jul. 9th, 2025 06:22 am
Powered by Dreamwidth Studios