Aug. 10th, 2014

sniffnoy: (Sonic)
So!

I should really be working on writing up integer complexity stuff at the moment. But, the other day I noticed these old entries of mine on "ordinal multichoose" and I caught the bug again. Done thinking about this for now, back to real work now, but I wanted to make some notes on what I found.

First off, new notation. The notation I've actually been using can't really go in HTML; I've been denoting these operations α multichoose β, except inbetween the α and the β is a fraction bar, except the fraction bar is an arrow -- pointing rightwards for lexicographic order and leftwards for reverse-lexicographic. (Had to look a few things up to figure out how to typeset that in TeX.) There's also the choose version, though that's 0 if β is infinite.

Anyway. I'll use the notations ((α↑β)), ((α↓β)), (α↑β), and (α↓β).

So, definitions: For ordinals α and β, ((α↑β)) is the set of all weakly decreasing functions from β to α, ordered lexicographically. This is well-ordered. ((α↓β)) is the same, except the order is reverse-lexicographic -- as in, higher places in β matter more, not as in reversing the whole order! This too is (well-defined and) well-ordered. (α↑β) and (α↓β) are the same, but restricting to strictly decreasing functions.

Note that if you try to do something similar with increasing functions, there is just no way you get a well-order.

When I thought about these previously, I think I considered ((α↑β)) to be nicer than ((α↓β)), in particular because it's continuous in α, while ((α↓β)) is continuous in neither variable. But now I don't think of either of them as particularly nicer.

I will use (n|k) to denote ordinary choose, and ((n|k)) to denote ordinary multichoose.

I wrote down some recursions for them last time, but I missed a few. Well -- my goal here isn't to put all my notes up on LJ, that would be pretty boring. Note that some of the recursions only work if an appropriate variable is finite.

Anyway. I had several goals. One was to figure out how to compute these operations on Cantor normal forms. I did not succeed at that in general, because, well, that appears to be really hard. But! There are some particular nice cases. In particular, the ↓ operations when β is finite.

Say α=ωα_0a0 + ... + ωα_ra_r + a, where I'm writing α in Cantor normal form, and separating out the finite part "a" as worthy of special attention. Then we have, for k finite and nonzero,

((α↓k)) = ωα_0 ka0 + ... + ωα_r k a_r + ((a|k)).

Pretty nice, no? The choose version is the same, except the multichoose at the end becomes a choose. Unfortunately, once k becomes infinite, things become complicated fast.

Also last time I was trying to resolve the question, for k finite, does one always have ((α↑k))≤(α↓k))? (And the same for the choose versions.) I had thought this was true, and spent some time trying to prove it, but now I can report a counterexample: α=ωω+1+1, k=2. On the left hand side we get ωω2+1ω+1+1, and on the right hand side we get ωω2+1+1. At least, I'm pretty sure I calculated both of those correctly. It's also a counterexample for the choose versions; in that case, we get the same things but without the +1s on each.

So, there's that. But the big thing is... how did I not notice this before? There's a symmetry law! The two operations are very closely related!

With ordinary multichoose, we have ((n+1|k))=((k+1|n)), since both are equal to (n+k|n,k) (I write it that way, rather than (n+k|k), to emphasize the symmetry.) With these ordinal versions of multichoose, we get

((α+1↑β)) = ((β+1↓α))

The proof is pretty simple, too! As in, you can straight-up construct an order isomorphism between these. I feel a little silly for not noticing this, but, this is really cool!

I feel like this also indicates that ((α↓β)) is somehow the "more fundamental" of the two operations. Because, see, ((α↑β)), well, if α=0, we know what it is; if α is a successor ordinal, we can apply the symmetry law to express it in terms of ↓ and if α is a limit ordinal, well, it's continuous in α, so it's a limit of things that can be expressed in terms of ↓. With ((α↓β)), if α=0 we know what it is, and if α is a successor we can switch it around, but if α is a limit ordinal, well, we don't have anything like that. (EDIT next day: Although, ((α↓β)) is pretty easy to compute in the case where α is a limit ordinal -- see below. The successor case is the only actually hard case.)

So, yeah. Now to put that away (for now, anyway) and get back to work...

EDIT next day: Actually, let me say a bit more about the computation of ((α↓β)) that I left out at first. Say we write α=α'+a, where α' is either 0 or a limit ordinal, and a is finite. Then in fact this breaks down into ((α'↓β))+((a↓β)). And the first of these is easy -- if β=0 we know it; if β is positive and finite it's given above (just multiply all the exponents in the Cantor normal form on the right by β); and if β is infinite, it's also easy (multiply by β+1 instead of β). Problem is the ((a↓β)) part! That seems to be complicated. Well, by the symmetry rule above, figuring out ((n↓β)) is equivalent to figuring out ((α↑k)), but, well, you'll notice I didn't give a formula for that -- that seems complicated in general. It might be doable, though. (Note that for any given β, since ((α↓β)) is strictly increasing in α, one has ((n↓β))<((ω↓β)) which does at least mean that when you compute ((α↓β)), the purely infinite part and the finite part do not interfere with one another.)

-Harry

June 2025

S M T W T F S
1234567
891011121314
15161718192021
2223 2425262728
2930     
Page generated Jul. 5th, 2025 07:27 pm
Powered by Dreamwidth Studios